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Abstract. Accelerated future learning, in which learning proceeds more
effectively and more rapidly because of prior learning, is considered to
be one of the most interesting measures of robust learning. A growing
body of studies have demonstrated that some instructional treatments
lead to accelerated future learning. However, little study has focused on
under- standing the learning mechanisms that yield accelerated future
learning. In this paper, we present a computational model that demon-
strates accelerated future learning through the use of machine learning
techniques for feature recognition. In order to understand the behavior
of the proposed model, we conducted a controlled simulation study with
four alternative versions of the model to investigate how both better prior
knowledge learning and better learning strategies might independently
yield accelerated future learning. We measured the learning outcomes of
the models by rate of learning and the fit to the pattern of errors made
by real students. We found out that both stronger prior knowledge and a
better learning strategy can speed up the learning process. Some model
variations generate human-like error patterns, but others learn to avoid
errors more quickly than students.

Key words: accelerated future learning, learner modeling

1 Motivation and Algorithm

Perhaps one of the most interesting measures of robust learning is accelerated
future learning. A growing number of studies have experimentally demonstrated
that some instructional treatments lead to accelerated future learning. These
treatments (and associated studies) include inventing for future learning [1],
self-explanation [2], and feature prerequisite drill [3]. While results are starting
to accumulate, we have little by way of precise understanding of the learning
mechanisms that yield these results. A computational model of accelerated fu-
ture learning that fits student learning data would be a significant achievement
in theoretical integration within the learning sciences, and reveal insights on
improving current education technologies.

Previous work [4] showed that one of the key factors that differentiates ex-
perts and novices is that experts view the world in terms of deep functional
features, while novices see in terms of shallow perceptual features. In this paper,



we propose a novel approach to modeling accelerated future learning through the
use of machine learning techniques to acquire deep features. We assume that the
input of the system is a set of feature recognition records. Each record consists
of an original problem (e.g. an expression, −3x), and the feature recognized from
the problem (e.g. the coefficient in the problem, −3 in −3x). The objective of
this work is to construct a computational model to learn feature recognition.

After careful examination of the problem, we find out that the feature recogni-
tion problem closely connects to the probabilistic context free grammar (PCFG)
induction problem, where knowledge is represented by grammar rules, and the
learning process is similar to grammar induction. Therefore, we extended a gram-
mar induction algorithm proposed by Li et al. [5], since it acquires PCFG from
observation sequences without any prior structural knowledge. Details about this
learning algorithm are described in [5].

To support feature learning, after acquiring the grammar with Li et al.’s algo-
rithm, our system finds the intermediate symbol that corresponds to the feature
most frequently in the parse trees of the training examples, and identifies it as the
target feature. To understand how prior knowledge and learning strategy could
affect learnng outcomes, we extended the learning algorithm in two directions.
First, we designed a transfer learning mechanism that biases the probabilities of
rules in future tasks toward the probabilities associated with previous tasks. The
learner records the number of times each grammar rule appeared in a parse tree
from previous tasks, and updates the rule probability in a new task by adding the
previous applied rule frequency to the training problems. Second, we extended
our learning mechanism to making use of a “semantic non-terminal constraint”
embedded in training data during learning. More specifically, the learner forces
all the feature subsequences to correspond to one non-terminal symbol.

2 Empirical Study

We carried out a controlled simulation study in algebra to test 1) whether
stronger prior knowledge and better learning strategies could yield accelerated
future learning, 2) if so, how prior knowledge and learning strategies affect the
learning outcome. There were 2-by-2 (4) alternative versions of the proposed
learning model in the study: L00, the original learner without transfer learning
and the non-terminal constraint; L01, the learner with the non-terminal con-
straint but without transfer learning; L10, the learner with transfer learning but
without the non-terminal constraint; L11, the learner with both tranfer learning
and the non-terminal constraint.

We designed three curricula in the study. Three tasks were used across the
three curricula with increasing complexities. The three curricula are 1) task one,
then task two; 2) task two, then task three; 3) task one, then task two, then
task three. In all but the last task, each learner was given 10 training problems.
For the last task, each learner was given one to five training records. Under each
training condition, both systems were tested on 100 expressions in the same form
of the training data in the last task. For each testing record, we compared the
feature recognized by the oracle schemas with that recognized by the acquired
schemas, and evaluated the correctness of output.
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Fig. 1. Learning curves for four learners in curriculum (a) from task one to task two.
(b) from task two to task three. (c) from task one to task two to task three.

We also compared the errors made by the learning system with common
errors made by real students in curriculum one. We inspected the common errors
made by real students in task two from a study of 71 high school students used
Carnegie Learning Algebra I Tutor, and noticed that mishandling of negative
coefficients (e.g., marking 3 instead of −3 as the coefficient of −3x) is the most
common error. The learning system was asked to recognize the coefficients of
the 100 given expressions, and was evaluated based on the match of the errors
made by the learner and the most common error made by real students.

As shown in Figure 1(a), the result suggests that with transfer learning, learn-
ers are able to acquire knowledge quicker than those without transfer learning.
Comparing the base learner, L00, and the learner with non-terminal constraint,
L01, we can see that a better learning strategy yields a steeper learning curve.
We can also see that in all three curricula, the transfer learner, L10, always out-
performs the learner with semantic non-terminal constraint, L01. Similar results
were also observed with curriculum two and curriculum three. This suggests
that prior knowledge is more effective in accelerating future learning than better
learning strategies. In the error matching study, we see that after being trained
with one to five problems, L00 generated the most common error in testing.
Besides that all other incorect answers are due to the incapability of identifying
a coefficient from the problem.
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